

# RS-WZ3/WZ1-N01-1 Temperature vibration transmitter

## user 's manual



1



## **1. Product introduction**

RS-WZ3/WZ1-N01-1 is a high-performance, low-power, anti-interference and composite vibration sensor developed and produced by using high-performance MEMS chips, embedded technology, temperature sensing technology and vibration sensing technology. The products are widely used in the on-line measurement of temperature and vibration of motor, reducer fan, generator, air compressor, centrifuge, water pump and other rotating equipment in coal mine, chemical industry, metallurgy, power generation and other industries.

The shell is made of stainless steel as a whole, and can be installed with threads if conditions permit. The standard threads on the metal shell can be quickly connected with the installation position. The magnetic suction installation method can also be used to eliminate the problem of drilling on site and make the installation more convenient.

## 2. Product selection

| RS- |      |      |    |    | Company code                                   |
|-----|------|------|----|----|------------------------------------------------|
|     | WZ1- |      |    |    | Single shaft temperature vibration transmitter |
|     | WZ3- |      |    |    | Three axis temperature vibration transmitter   |
|     |      | N01- |    |    | RS485 (Modbus-RTU agreement)                   |
|     |      |      | 1- |    | First generation appearance                    |
|     |      |      |    | M8 | M8 external thread                             |
|     |      |      |    | M5 | M5 external thread                             |
|     |      |      |    | СХ | Magnetic suction installation                  |

## **3. Functional features**

The product adopts high-performance MEMS chip, with high measurement accuracy and strong anti-interference ability

The product provides thread installation and magnetic installation .

It can measure the vibration velocity, vibration displacement and other parameters of single and three shafts.

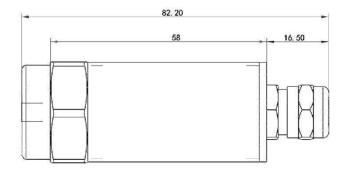
It can measure the surface temperature of the motor

10-30V DC wide voltage power supply.

Protection grade IP67.

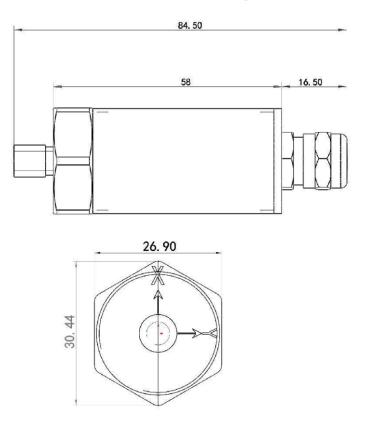
Support remote upgrade.

## 4. Description of technical parameters


| power supply                    | DC10-30V                |  |  |
|---------------------------------|-------------------------|--|--|
| power waste                     | 0.1W(DC24V)             |  |  |
| Degree of protection            | IP67                    |  |  |
| Frequency range (HZ)            | 10-1600                 |  |  |
| Vibration measurement direction | Single or three-axis    |  |  |
| Transmitter circuit operating   | -40°C~+80°C, 0%RH~80%RH |  |  |



| temperature                        |                                |
|------------------------------------|--------------------------------|
| Measuring range of vibration speed | 0-50                           |
| (mm/s)                             |                                |
| Vibration velocity measurement     | $\pm 1.5\%$ FS (@1KHZ, 10mm/s) |
| accuracy (mm/s)                    |                                |
| Vibration speed display resolution | 0.1                            |
| (mm/s)                             |                                |
| Measuring range of vibration       | 0-5000                         |
| displacement ( µ m)                |                                |
| Vibration displacement display     | 0.1                            |
| resolution (µm)                    |                                |
| Measuring range of surface         | -40~+80                        |
| temperature (°C)                   |                                |
| Temperature display resolution     | 0.1                            |
| (°C)                               |                                |
| signal output                      | RS-485                         |


## 5. Installation Instructions 5.1 External dimensions

Installation dimension of magnetic suction



Thread installation size





#### **Equipment list:**

- 1 main equipment
- Certificate, warranty card, etc

## 5.2 Installation and wiring instructions

1) There are certain specification requirements for 485 line field wiring. For details, please refer to the data package 485 Equipment Field Wiring Manual.

2) When the device is connected to the 485 bus, ensure that the addresses of multiple devices do not duplicate.

3) Installation Instructions

The sensor thread is installed with two specifications: m8 \* 1.25 \* 10 and m5 \* 7.7 external thread. In addition, there is a magnetic installation method.

#### Power supply and 485 signal

Wide voltage power input can be 10~30V. When wiring 485 signal lines, it should be noted that lines A and B should not be connected reversely, and the addresses of multiple devices on the bus should not conflict.



#### Specific wiring

|                    | Linear color   | explain        |  |
|--------------------|----------------|----------------|--|
| Power Supply brown |                | V+ (10~30V DC) |  |
|                    | Yellow (green) | V-             |  |
| signal             | Yellow (green) | 485-A          |  |
| communication      | blue           | 485-B          |  |

## **5.3Installation and use of configuration software**

#### Software selection

Open the data package, select "Debugging software" - "485 parameter configuration software", and find



Open it. Note: Only one device can be connected when the configuration software is used to

change the address and baud rate.

#### **Parameter setting**

① Select the correct COM port (view the COM port in "My Computer - Properties - Device Manager - Port"). The following figure lists the drive names of several different 485 converters.



(2) . Connect only one device and power it on. Click the test baud rate of the software, and the software will test the baud rate and address of the current device. The default baud rate is 4800bit/s, and the default address is 0x01.

③ Modify the address and baud rate as required, and query the current function status of the device.

4 If the test is not successful, please recheck the equipment wiring and 485 driver installation.



#### User Manual for RS-WZ3/WZ1-N01-1 Temperature Vibration Transmitter V1.0



## 6. 485communication protocol

## 6.1 Basic communication parameters

| code        | 8-bit binary                |
|-------------|-----------------------------|
| Data bits   | 8bit                        |
| Parity bit  | -                           |
| Stop bit    | 1bit                        |
| Error check | CRC (Redundant cyclic code) |
| Baud rate   | 2400~115200 Can be set      |

## 6.2 Data frame format definition

Modbus RTU communication protocol is adopted, and the format is as follows:

Time of initial structure  $\geq$  4 bytes

Address code=1 byte

Function code=1 byte

Data area=N bytes

Error check=16 bit CRC code

Time to end structure  $\geq$  4 bytes

Address code: the address of the transmitter, which is unique in the communication network (factory default 0x01).

Data area: The data area is specific communication data. Note that the high byte of 16bits data comes first!

CRC code: two byte check code.



#### Host interrogation frame structure:

| A | ddress c | Function c | Register start ad | Register lengt | Check code 1 | Check code hig |
|---|----------|------------|-------------------|----------------|--------------|----------------|
|   | ode      | ode        | dress             | h              | ow bit       | h              |
|   | 1byte    | 1byte      | 2byte             | 2byte          | 1 byte       | 1byte          |

Slave response frame structure:

| Address<br>code | Function<br>code | Number of valid bytes | Data Zone<br>1 | Second data area | Nth data area | Check code |
|-----------------|------------------|-----------------------|----------------|------------------|---------------|------------|
| 1byte           | 1byte            | 1byte                 | 2byte          | 2byte            | 2byte         | 2byte      |

## 6.3 Register address description RS-WZ1-N01 Register Description

| Register<br>address | PLC or<br>configuration<br>address | content                                | Support function code | explain                                                    |
|---------------------|------------------------------------|----------------------------------------|-----------------------|------------------------------------------------------------|
| 0000 H              | 40001                              | temperature                            | 0x03/0x04             | Real time value of temperature (increased by 10 times)     |
| 0001 H              | 40002                              | speed                                  | 0x03/0x04             | Real time value of speed<br>(increased by 10 times)        |
| 0002H               | 40003                              | displacement                           | 0x03/0x04             | Real time value of speed<br>(increased by 10 times)        |
| 0050H               | 40081                              | Temperature<br>calibration<br>value    | 0x03/0x04/0x06        | Integer (10 times larger)                                  |
| 0068H<br>0069H      | 40105<br>40106                     | Speed<br>calibration<br>value A        | 0x03/0x04/0x10        | Z-axis speed coefficient A (floating point type)           |
| 006AH<br>006BH      | 40107<br>40108                     | Speed<br>calibration<br>value B        | 0x03/0x04/0x10        | Z-axis speed coefficient B (floating point type)           |
| 0074H<br>0075H      | 40117<br>40118                     | Displacement<br>calibration<br>value A | 0x03/0x04/0x10        | Z-axis displacement coefficient<br>A (floating point type) |
| 0076H               | 40119                              | Displacement                           | 0x03/0x04/0x10        | Z-axis displacement coefficient B                          |



User Manual for RS-WZ3/WZ1-N01-1 Temperature Vibration Transmitter V1.0

| 0077H  | 40120 | calibration |                | (floating point type)     |
|--------|-------|-------------|----------------|---------------------------|
|        |       | value B     |                |                           |
| 07D0 H | 42001 | Device      | 0x03/0x04/0x06 | 1~254 (factory default 1) |
|        |       | address     |                |                           |
| 07D1 H | 42002 | Baud rate   |                | 0 stands for 2400         |
|        |       |             |                | 1 stands for 4800         |
|        |       |             |                | 2 for 9600                |
|        |       |             | 0x03/0x04/0x06 | 3 for 19200               |
|        |       |             |                | 4 stands for 38400        |
|        |       |             |                | 5 stands for 57600        |
|        |       |             |                | 6 represents 115200       |
|        |       |             |                | 7 for 1200                |

## **RS-WZ3-N01 Register Description**

| Register<br>address | PLC or<br>configuration<br>address | content                | Support function code | explain                                                              |
|---------------------|------------------------------------|------------------------|-----------------------|----------------------------------------------------------------------|
| 0000 H              | 40001                              | temperature            | 0x03/0x04             | Real time value of temperature (increased by 10 times)               |
| 0001 H              | 40002                              | X-axis speed           | 0x03/0x04             | Real time value of X-axis speed (increased by 10 times)              |
| 0002H               | 40003                              | Y-axis speed           | 0x03/0x04             | Real time value of Y-axis speed (increased by 10 times)              |
| 0003H               | 40004                              | Z-axis speed           | 0x03/0x04             | Real time value of Z-axis speed (increased by 10 times)              |
| 0004H               | 40005                              | X-axis<br>displacement | 0x03/0x04             | Real time value of X-axis<br>displacement (increased by 10<br>times) |
| 0005H               | 40006                              | Y-axis<br>displacement | 0x03/0x04             | Real time value of Y-axis<br>displacement (increased by 10<br>times) |
| 0006H               | 40007                              | Z-axis<br>displacement | 0x03/0x04             | Real time value of Z-axis<br>displacement (increased by 10<br>times) |
| 0050H               | 40081                              | Temperature            | 0x03/0x04/0x06        | Integer (10 times larger)                                            |



|       |       | calibration  |                |                                   |
|-------|-------|--------------|----------------|-----------------------------------|
|       |       | value        |                |                                   |
| 0060H | 40097 | X axis speed |                | X-axis speed coefficient A        |
| 0061H | 40098 | calibration  | 0x03/0x04/0x10 | (floating point type)             |
|       |       | value A      |                |                                   |
| 0062H | 40099 | X axis speed |                | X-axis speed coefficient B        |
| 0063H | 40100 | calibration  | 0x03/0x04/0x10 | (floating point type)             |
|       |       | value B      |                |                                   |
| 0064H | 40101 | Y-axis speed |                | Y-axis speed coefficient A        |
| 0065H | 40102 | calibration  | 0x03/0x04/0x10 | (floating point type)             |
|       |       | value A      |                |                                   |
| 0066H | 40103 | Y-axis speed |                | Y-axis speed coefficient B        |
| 0067H | 40104 | calibration  | 0x03/0x04/0x10 | (floating point type)             |
|       |       | value B      |                |                                   |
| 0068H | 40105 | Z-axis speed |                | Z-axis speed coefficient A        |
| 0069H | 40106 | calibration  | 0x03/0x04/0x10 | (floating point type)             |
|       |       | value A      |                |                                   |
| 006AH | 40107 | Z-axis speed |                | Z-axis speed coefficient B        |
| 006BH | 40108 | calibration  | 0x03/0x04/0x10 | (floating point type)             |
|       |       | value B      |                |                                   |
| 006CH | 40109 | X axis       |                | X axis displacement coefficient   |
| 006DH | 40110 | displacement | 0x03/0x04/0x10 | A (floating point type)           |
|       |       | calibration  |                |                                   |
|       |       | value A      |                |                                   |
| 006EH | 40111 | X axis       |                | X axis displacement coefficient B |
| 006FH | 40112 | displacement | 0x03/0x04/0x10 | (floating point type)             |
|       |       | calibration  |                |                                   |
|       |       | value B      |                |                                   |
| 0070H | 40113 | Y axis       |                | Y-axis displacement coefficient   |
| 0071H | 40114 | displacement | 0x03/0x04/0x10 | A (floating point type)           |
|       |       | calibration  |                |                                   |
|       |       | value A      |                |                                   |
| 0072H | 40115 | Y axis       | 0x03/0x04/0x10 | Y-axis displacement coefficient   |
| 0073H | 40116 | displacement |                | B (floating point type)           |



User Manual for RS-WZ3/WZ1-N01-1 Temperature Vibration Transmitter V1.0

|        |       | calibration  |                |                                   |
|--------|-------|--------------|----------------|-----------------------------------|
|        |       | value B      |                |                                   |
| 0074H  | 40117 | Z-axis       |                | Z-axis displacement coefficient   |
| 0075H  | 40118 | displacement | 0x03/0x04/0x10 | A (floating point type)           |
|        |       | calibration  | 0x03/0x04/0x10 |                                   |
|        |       | value A      |                |                                   |
| 0076H  | 40119 | Z-axis       |                | Z-axis displacement coefficient B |
| 0077H  | 40120 | displacement | 0x03/0x04/0x10 | (floating point type)             |
|        |       | calibration  |                |                                   |
|        |       | value B      |                |                                   |
| 07D0 H | 42001 | Device       | 0.02/0.04/0.00 | 1~254 (factory default 1)         |
|        |       | address      | 0x03/0x04/0x06 |                                   |
| 07D1 H | 42002 | Baud rate    |                | 0 representative 2400             |
|        |       |              |                | 1 representative 4800             |
|        |       |              |                | 2 representative 9600             |
|        |       |              | 0              | 3 representative 19200            |
|        |       |              | 0x03/0x04/0x06 | 4 representative 38400            |
|        |       |              |                | 5 representative 57600            |
|        |       |              |                | 6 representative 115200           |
|        |       |              |                | 7 representative 1200             |

## 6.4 Example and explanation of communication protocol

Example 1: Read the temperature value of device 1

Interrogation frame:

| Address cod<br>e | Function cod | Start Address | Data length | Check code lo<br>w bit | Check code hi<br>gh |
|------------------|--------------|---------------|-------------|------------------------|---------------------|
| 0x01             | 0x03         | 0x00 0x00     | 0x00 0x01   | 0x84                   | 0x0A                |

Response frame: (for example, device 1 is the temperature, and the real-time value is 8.6 °C)

| Address | Functio | Return the numb   | Device 1 real-time dat | Check code | Check code h |
|---------|---------|-------------------|------------------------|------------|--------------|
| code    | n code  | er of valid bytes | а                      | low bit    | igh          |
| 0x01    | 0x03    | 0x02              | 0x00 0x50              | 0xB8       | 0x78         |



Temperature calculation:

Temperature: 0050H (hexadecimal)=80 (decimal)=>Temperature=8.0 °C (the upload value of our

transmitter is ten times of the actual value)

## 6.5 Common problems and solutions

Device cannot be connected to PLC or computer

Possible causes:

1) The computer has multiple COM ports, and the selected port is incorrect

2) The device address is incorrect, or there are devices with duplicate addresses (factory default is all 1)

3) Baud rate, check mode, data bit, stop bit error

4) 485 bus is disconnected, or A and B lines are connected reversely

5) If the number of equipment is too large or the wiring is too long, power shall be supplied nearby, 485 intensifiers shall be added, and 120  $\Omega$  terminal resistance shall be added at the same time.

6) USB to 485 drive not installed or damaged

7) Equipment damage.



## **Appendix 1**

ISO2372 equipment vibration standard is applicable to all kinds of motors, fans, pumps, machine tools, etc.

This product can detect the three-axis vibration speed within the range of 0-50mm/s and 0-5000  $\mu$  M range of triaxial vibration displacement, applicable to vibration test and fault reduction.

|                 | ISO2372 Equipment Vibration Standard |          |           |          |  |
|-----------------|--------------------------------------|----------|-----------|----------|--|
| Vibration range | Equipment category                   |          |           |          |  |
| unit (mm/s)     | Class I                              | Class II | Class III | Class IV |  |
| 0.71            | А                                    | А        | А         | А        |  |
| 1.12            | В                                    | А        | А         | А        |  |
| 1.8             | В                                    | В        | А         | А        |  |
| 2.8             | С                                    | В        | В         | А        |  |
| 4.5             | С                                    | С        | В         | В        |  |
| 7.1             | D                                    | С        | С         | В        |  |
| 11.2            | D                                    | D        | С         | С        |  |
| 18              | D                                    | D        | D         | С        |  |
| 28              | D                                    | D        | D         | D        |  |

| Class I   | Small equipment below 15KW         | A: | good       |
|-----------|------------------------------------|----|------------|
| Class II  | 15-75KW medium equipment           | B: | Acceptable |
| Class III | Large equipment installed on hard  | C: | be careful |
|           | foundation                         |    |            |
| Class IV  | Class IV High speed equipment with |    | not allow  |
|           | rotating speed higher than natural |    |            |
|           | frequency                          |    |            |